WATER BINDING THROUGH POLYACRYLAMIDE HYDROGEL AND THE INFLUENCE OF ITS PRELIMINARY SATURATION BY ENOXIL

Volodymyr Turov ${ }^{\text {a }}$, Viktor Bogatyrev ${ }^{\text {a }}$, Tatiana Krupska ${ }^{\text {a }}$, Mariia Galaburda ${ }^{\text {a }}$, Tudor Lupascu ${ }^{\text {b }}$, Igor Povar ${ }^{b^{*}}$, Natalia Kokosha ${ }^{c}$
a"O.O. Chuyko" Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov str., Kyiv 03164, Ukraine
${ }^{b}$ Institute of Chemistry of Academy of Sciences of Moldova, 3 Academiei str., Chisinau MD2028, Republic of Moldova
c"International Center for Medical Technologies Implementation" LTD, 12 Melnikova str., Kyiv, Ukraine
*e-mail: ipovar@yahoo.ca; phone: (+373) 696699 36; fax (+373) 22739736

Abstract

The state of water in a polyacrylamide gel has been studied by the ${ }^{1} \mathrm{H}$ NMR spectroscopy. It has been shown that water is in a strongly associated state in the form of clusters with radius is in the range of $\mathrm{R}=0.6-30 \mathrm{~nm}$. The introduction of chloroform into the gel increases the binding of absorbed water, which indicates the effect of CDCl_{3} on the structure of water-filled cavities formed by the polymer linkage. Trifluoroacetic acid (TFA) reduces the interaction of the polymer with water, probably due to its binding to nitrogen-containing groups. Even more the interphase energy of water decreases in the presence of Enoxil. This decrease makes it possible to determine the free energy of the interaction of Enoxil- polyacrylamide gels, which is maximal in air and decreases in the presence of CDCl_{3} and TFA.

Keywords: cluster, Enoxil, ${ }^{1} \mathrm{H}$ NMR spectroscopy, polyacrylamide gel, polymer linkage.
Received: 10 November 2017/ Revised final: 16 January 2018/ Accepted: 22 January 2018

