WATER BINDING THROUGH POLYACRYLAMIDE HYDROGEL AND THE INFLUENCE OF ITS PRELIMINARY SATURATION BY ENOXIL

Volodymyr Turov^a, Viktor Bogatyrev^a, Tatiana Krupska^a, Mariia Galaburda^a, Tudor Lupascu^b, Igor Povar^{b*}, Natalia Kokosha^c

^a "O.O. Chuyko" Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov str., Kyiv 03164, Ukraine ^bInstitute of Chemistry of Academy of Sciences of Moldova, 3 Academiei str., Chisinau MD2028, Republic of Moldova ^c"International Center for Medical Technologies Implementation" LTD, 12 Melnikova str., Kyiv, Ukraine ^{*}e-mail: ipovar@vahoo.ca; phone: (+373) 69 66 99 36; fax (+373) 22 739736

Abstract. The state of water in a polyacrylamide gel has been studied by the ¹H NMR spectroscopy. It has been shown that water is in a strongly associated state in the form of clusters with radius is in the range of R= 0.6-30 nm. The introduction of chloroform into the gel increases the binding of absorbed water, which indicates the effect of CDCl₃ on the structure of water-filled cavities formed by the polymer linkage. Trifluoroacetic acid (TFA) reduces the interaction of the polymer with water, probably due to its binding to nitrogen-containing groups. Even more the interphase energy of water decreases in the presence of Enoxil. This decrease makes it possible to determine the free energy of the interaction of Enoxil- polyacrylamide gels, which is maximal in air and decreases in the presence of CDCl₃ and TFA.

Keywords: cluster, Enoxil, ¹H NMR spectroscopy, polyacrylamide gel, polymer linkage.

Received: 10 November 2017/ Revised final: 16 January 2018/ Accepted: 22 January 2018