ZnAL₂O₄@ZnO AN EFFECTIVE, HETEROGENEOUS CATALYST FOR THE SYNTHESIS OF BIS-(β-ENAMINONES) AND BIS-(β-ENAMINOESTERS)

Mohamed Anouar Harrad ^{a,c*}, Adnan Semane ^b, Mohammed Badereddine ^c, Abdessamad Tounsi ^a

 ^aEnvironmental, Ecological, and Agro-Industrial Engineering Laboratory Sultan Moulay Slimane University, P.O. Box 523, Beni-mellal 23000, Morocco.
^b Applied Physical Chemistry Laboratory, Faculty of Sciences, Ibn Zohr University, BP 8106 Dakhla, 80060 Agadir, Morrocco.
^cRegional centre for Education training and formation, CRMEF 40000 Marrakech-Safi, Morocco.
^{*}e-mail: ma.harrad@yahoo.fr

Abstract. With ZnAl₂O₄@ZnO as a catalyst, an environmentally eco-friendly and highly effective method was developed for regio-and chemo-selective bis-enamination of 1,3-dicarbonyl compounds and aromatic, aliphatic primary amines. A wide variety of bis-(β -enaminones) and bis-(β -enaminoesters) can be synthesized using this highly versatile method which offers good yields. This procedure may be done at room temperature and is environmentally beneficial because it uses ZnAl₂O₄@ZnO as catalyst heterogeneous, recyclable, and stable under free solvents conditions. This catalyst was prepared by the co-precipitation reaction at constant pH, their morphology-structure was confirmed by spectral analysis techniques such as: X-ray diffraction, SEM, EDX, FTIR.

Keywords: bis-(β -enaminoester), bis-(β -enaminone), free solvent condition, condensation, catalyst heterogeneous.