BIOGENIC ZnO NANOPARTICLES: STRUCTURAL CHARACTERISATION AND BIOACTIVITY EVALUATION

Abhimanyu Parasram Pawar^{a*}, Kishor Sudhir Naktode^a, Arvind Janardhan Mungole^b, Srinivas Anga^c

^aDepartment of Chemistry, Nevjabai Hitkarini College, Khed Road, Bramhapuri, Dist. Chandrapur, Maharashtra 441 206, India ^bDepartment of Botany, Nevjabai Hitkarini College, Khed Road, Bramhapuri, Dist. Chandrapur, Maharashtra 441 206, India ^cDepartment of Chemistry, Koneru Lakshmaiah Education Foundation, Bachupally-Gandimaisamma Road, Bowrampet, Hyderabad, Telangana-500043, India *e-mail: pawarabhay909@gmail.com

Abstract. Zinc oxide nanoparticles (ZnO NPs) were synthesised using *Nicotiana plumbaginifolia* plant extract through a green approach. XRD, FTIR, and EDX confirmed their hexagonal wurtzite structure and high purity. SEM and TEM showed spherical ZnO NPs (16–24 nm), with a band gap of 3.33 eV. FTIR spectra displayed a peak at 480 cm⁻¹, confirming Zn–O bond formation. The ZnO NPs exhibited strong antibacterial activity against *P. aeruginosa*, *E. coli, K. pneumoniae*, and *S. aureus* at 100 μ L using the well diffusion method. They also showed excellent antioxidant potential, scavenging DPPH radicals with 75.59% inhibition at 250 μ g/mL. This eco-friendly synthesis method offers a sustainable approach for ZnO NP production, highlighting their potential for biomedical and pharmaceutical applications.

Keywords: green synthesis, ZnO nanoparticle, EDX, FT-IR, SEM, antibacterial activity, antioxidant activity.