NEW HOMOMETALLIC OCTANUCLEAR CHROMIUM(III) RINGS

Grigore Timco[®]^{*}, Robin Pritchard[®], George Whitehead[®], Richard Winpenny[®]^{*}

Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom *e-mail: grigore.timco@manchester.ac.uk; Richard.winpenny@manchester.ac.uk

Abstract. Four new { Cr_8 } rings have been synthesized and characterized; they are all based on the classic [$CrF(O_2C'Bu)_2$]₈ ring **1**. Three routes have been studied. The first is direct synthesis, by reacting hydrated chromium(III) fluorides with the acid; this has been used to produce [$CrF(O_2CEt)_2$]₈ **3**. The second route uses **3** as a precursor and substitute with an incoming carboxylate. This has been used to make [$CrF(O_2CCCl_3)_2$]₈ **4** and [$CrF(O_2CC_6F_5)_2$]₈ **5**. The third route uses *N*-ethyl-*D*-glucamine (H₅Etglu) as a template and produces chiral rings [$Cr_8F_4(Etglu)(O_2C'Bu)_{15}$] **6**. The single crystal X-ray structures of these new compounds are reported.

Keywords: chromium, carboxylate, polymetallic ring, crystallography.

Received: 18 February 2022