http://cjm.ichem.md

http://doi.org/10.19261/cjm.2023.1081

ISOTHERMAL SECTION OF THE La₂O₃-Lu₂O₃-Er₂O₃ TERNARY PHASE DIAGRAM AT 1250°C

Olga Chudinovych o a,b

^aFrantsevich Institute for Problems in Materials Science NAS of Ukraine, 3, Krzhizhanovsky str., Kyiv 03142, Ukraine ^bNational Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 4, Peremohy ave., Kyiv 03050, Ukraine e-mail: chudinovych_olia@ukr.net

Abstract. The phase equilibria in the ternary $La_2O_3-Lu_2O_3-Er_2O_3$ system at $1250^{\circ}C$ were studied by X-ray diffraction, and electron microscopy in the overall concentration range. At $1250^{\circ}C$ in the $La_2O_3-Lu_2O_3-Er_2O_3$ system solution fields are formed based on cubic (C) modification of $Lu_2O_3(Er_2O_3)$, hexagonal (A) modification of La_2O_3 , as well as ordered phase structure perovskite-type $LaLuO_3$ ($LaErO_3$) (R). The isothermal section of the $La_2O_3-Lu_2O_3-Er_2O_3$ phase diagram at $1250^{\circ}C$ has shown the three one-phase fields (A- La_2O_3 , R, C- $Lu_2O_3(Er_2O_3)$) corresponding to solid solutions based on starting components and two dual-phase fields (C+R, A+R) between them. The refined lattice parameters of the unit cells for solid solutions and microstructures of the definite field of compositions for the systems solid were determined.

Keywords: phase equilibria, lanthana, lutetia, erbia, lattice parameter.

Received: 27 June 2023/Revised final: 28 August 2023/Accepted: 1 September 2023