http://cjm.ichem.md

https://doi.org/10.19261/cjm.2024.1156

SYNTHESIS OF CYCLE B FUNCTIONALIZED DERIVATIVES OF (+)-LARIXOL

Alexandru Ciocarlan ^{©a*}, Lidia Lungu ^{©a}, Svetlana Blaja ^{©a}, Sergiu Shova ^{©b}, Aculina Aricu ^{©a}

^a Moldova State University, Institute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova ^b 'Petru Poni' Institute of Macromolecular Chemistry of the Romanian Academy, 41A, Grigore Ghica Voda Aleey, Iasi RO-700487, Romania ^{*}e-mail: algciocarlan@yahoo.com

Abstract. The main purpose of this research was the synthesis of highly functionalized derivatives of (+)-larixol by combination of classical and nonconventional method, like dye-sensitized photooxidation with preservation of outside chain. As a result, a series of four new cycle B derivatives of (+)-larixol were obtained, including products of photooxidative dehydrogenation and [2+4] cycloaddition of singlet oxygen, compounds **7** and **8**, respectively. The structure of all synthesized compounds was fully confirmed by spectral method (IR, ¹H and ¹³C NMR) and for compound **8** containing endoperoxide functional group, additionally by single crystal X-ray diffraction analysis.

Keywords: (+)-larixol, enolacetylation, dye-sensitized photooxidation, reduction, X-ray analysis.

Received: 29 January 2024/ Revised final: 17 April 2024/ Accepted: 23 April 2024