ZnAl₂O₄@ZnO AN EFFECTIVE, HETEROGENEOUS CATALYST FOR THE SYNTHESIS OF β -ENAMINONES AND β -ENAMINOESTERS

Mohamed Anouar Harrad ^(Da,c*), Adnane Seman ^(Db), Mohammed Badereddine ^c, Abdessamad Tounsi ^(Da)

^a Environmental, Ecological, and Agro-Industrial Engineering Laboratory, Sultan Moulay Slimane University, P.O. Box 523, Beni-mellal 23000, Morrocco

^b Applied Physical Chemistry Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morrocco ^c Regional centre for Education training and formation, CRMEF 40000 Marrakech-Safi, Morocco ^{*}e-mail: ma.harrad@yahoo.fr

Abstract. Using $ZnAl_2O_4@ZnO$ as a catalyst, an environmentally friendly and very effective method has been developed to selectively add a ring to 1,3-dicarbonyl compounds and aromatic, aliphatic primary amines. A wide variety of bis(β -enaminones) and bis(β -enaminoesters) can be synthesized using this highly versatile method, which provides good yields. This procedure can be carried out at room temperature, which is environmentally advantageous as it utilizes $ZnAl_2O_4@ZnO$ as a heterogeneous, recyclable and stable catalyst under free solvent conditions. A co-precipitation reaction at constant pH was used to prepare this catalyst, and spectral analysis (X-ray diffraction, FTIR) and morphological characterization techniques (SEM, EDX) confirmed its morphological structure.

Keywords: bis(β -enaminoester), bis(β -enaminone), free solvent condition, condensation, heterogeneous catalyst.

Received: 16 July 2024/ Revised final: 16 October 2024/ Accepted: 18 October 2024