SYNTHESIS OF CHITOSAN GRAFTED WITH AMINOMETHYL ZINC PHTHALOCYANINE FOR PHOTODYNAMIC THERAPY

Stefan Robu ^{(Da*}, Tamara Potlog ^{(Da}, Ion Bulimestru ^{(Db}), Ion Lungu ^{(Da}, Olga Sadohina ^{(Db}), Alexandrina Druta ^{(Da}, Petru Bulmaga ^{(Db}), Iacob Gutu ^{(Da}

> ^aOrganic/Inorganic Materials in Optoelectronics, Moldova State University, 60, Alexei Mateevici str., Chisinau MD-2009, Republic of Moldova
> ^bFaculty of Chemistry and Chemical Technology, Moldova State University, 60, Alexei Mateevici str., Chisinau MD-2009, Republic of Moldova
> ^{*}e-mail: s.v.robu@mail.ru

Abstract. This paper reports the synthesis of a substituted aminomethyl zinc phthalocyanine (AmPcZn) and its covalent grafting onto chitosan *via* an ethyl chloroformate-mediated reaction. Chitosan-based copolymers containing 10%, 20%, 30%, and 60% (w/w) AmPcZn were successfully obtained. The chemical structure of the synthesized AmPcZn was confirmed by ¹H-NMR spectroscopy and elemental analysis, which were consistent with the expected molecular composition. The grafting reaction and structural integrity of the resulting copolymers were investigated using Fourier-transform infrared (FTIR) and UV-Vis spectroscopies. FTIR spectra revealed characteristic amide and carbonyl stretching bands, confirming covalent bond formation between chitosan and AmPcZn. UV-Vis measurements showed a concentration-dependent increase in absorbance and a typical splitting of the Q-band with band at 605 nm and 715 nm, indicating the successful incorporation of the phthalocyanine moiety into the polymeric matrix.

Keywords: ZnPc derivative, chitosan, grafting reaction, UV-Vis spectroscopy, FTIR spectroscopy.

Received: 06 November 2024/ Revised final: 2 June 2025/ Accepted: 4 June 2025