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Abstract. A heterometal assembled complex of tetrakis(µ-butanoato)diruthenium(II,III) and 

tetracyanidoaurate(III) [RuIIRuIII(n-C3H7COO)4AuIII(CN)4]n was synthesized and characterized by the 

elemental analysis and infrared spectroscopy. The single-crystal X-ray structure analysis revealed that 

the complex consists of zigzag chain molecules of alternating arrangement of the Ru2(n-C3H7COO)4
+ 

and Au(CN)4
– units with cis-bridging mode of the Au(CN)4

– units. The temperature dependence of the 

magnetic susceptibility data (4.5—300 K) showed that the magnetic interaction between the dinuclear 

RuIIRuIII units (S= 3/2) is negligibly small with a zero-field splitting parameter D value of 60 cm–1.  
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Introduction 

Dinuclear metal carboxylates have attracted 

much attention from many researchers because of 

their lantern- or paddlewheel-shaped clusters  

[1-7]. Axial and equatorial sites of the dinuclear 

clusters are available for coordination of linker 

ligands to construct coordination polymers and 

metal-organic frameworks, respectively, giving 

interesting gas-adsorption [3] and charge transfer 

[4] phenomena. In these dinuclear clusters, 

mixed-valent diruthenium(II,III) carboxylates are 

paramagnetic and promising to make magnetic 

materials because they can be used as building 

blocks with three unpaired electrons within the 

dinuclear clusters [5-7]. Some crystal structures 

and magnetic properties were investigated for 

metal-assembled complexes of dinuclear 

ruthenium carboxylates with linker ligands such 

as N,N’-bidentate ligands, p-quinones, and 

organic and inorganic cyano groups to construct 

one-, two- and three-dimensional assemblies [7]. 

Antiferromagnetic, ferrimagnetic, and 

ferromagnetic interactions were found in these 

metal-assembled systems. An attempt to add more 

functionality such as liquid crystalline properties 

to these systems by introducing long alkyl chains 

to the carboxylate ligand moieties was made and a 

molecular fastener effect in magnetic interactions 

[8] and liquid crystalline properties [9] were 

found.  

Metal cyanides can be used as linker 

ligands with triple CN bonds, which may be 

expected to communicate electrons between the 

adjacent metal atoms and provide an opportunity 

to construct heterometal systems. The synthesis of 

heterometal assemblies of diruthenium(II,III) 

carboxylates as well as dirhodium(II) 

carboxylates was accomplished by the use of 

dicyanidoargentate(I) [10,11], dicyanidoaurate(I) 

[12-14], tetracyanidonickelate(II) [15-17], 

tetracyanidopalladate(II) [17-19], 

tetracynidoplatinate(II) [17,20,21], 

teracyanidoaurate(III) [22], 

hexacyanidochromate(III) [23-27], 

hexacyanidoferrate(III) [23-25,28,29], 

hexacyanidocobaltate(III) [22-24,27,28,30,31] 

and octacyanidotungstate(V) [32-35]. 

Tetracyanidometalates are unique linker  

ligands, showing geometric isomerism, that is, 

trans- and cis-orientations to the two  

linked dimetal carboxylate units [15-22].  

In the case of dirhodium(II) acetate, an almost 

linear chain structure with a trans-bridging  

mode was observed in heterometal  
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complexes with tetracyanidometalate(II) 

(PPh4)2n[{Rh2(CH3COO)4}{M(CN)4}]n (M= Ni, 

Pd, Pt) [17]. On the other hand, such geometric 

isomerism was observed in heterometal 

complexes of diruthenium(II,III) carboxylates 

Ru2(RCOO)4
+ (R= CH3, C2H5, i-C3H7, and t-C4H9) 

with tetracyanidoaurate(III) [22]. The X-ray 

crystal structure analysis revealed that the  

Ru2Au complex of acetate (R= CH3) and  

2,2-dimethylpropanoate (R= t-C4H9) are wave-

like chain molecules with trans-bridging mode of 

the teracyanidoaurate(III) linkers, while the 

Ru2Au complex of propanoate (R= C2H5) and  

2-methylpropanoate (i-C3H7) are zigzag chain 

molecules with cis-bridging mode of the 

Au(CN)4
– linkers [22].  

The aim of this study was to examine the 

geometric isomerism in tetracyanidoaurate(III)  

for the metal assembly of tetrakis 

(µ-butanoato)diruthenium(II,III) (R= n-C3H7), 

because the assembled compound may be 

regarded as a test case to develop  

liquid-crystalline materials based on heterometal 

complexes of diruthenium(II,III) carboxylates 

with long alkyl chains [36,37].  

Hence a new heterometal complex, catena-(bis 

(µ-cyanido)-tetrakis(µ-butanoato)-dicyanido-

gold-diruthenium), [RuIIRuIII(n-C3H7COO)4 

AuIII(CN)4]n was synthesized and the crystal 

structure was determined by the single-crystal  

X-ray diffraction method to disclose the 

orientation of the linking ligands. Magnetic 

susceptibility data were also measured. 

 

Experimental 

Materials 

Unless otherwise stated, the reagents and 

solvents were obtained from commercial sources 

and used without further purification. The starting 

complex [Ru2Cl(CH3COO)4] was synthesized by 

the modified method to the procedure described 

by Wilkinson, G. et al. [38]. 

Synthesis of [Ru2Cl(CH3COO)4]  

A quantity of RuCl3·6H2O (1.517 g,  

7.31 mmol) and LiCl (1.511 g, 35.6 mmol) was 

dissolved in a mixture of acetic acid and acetic 

anhydride (V/V= 52.5 mL/10.5 mL) and refluxed 

in a stream of dried air overnight. The resulting 

reddish-brown precipitate was collected by 

filtration, washed with methanol and diethyl ether, 

and dried in vacuo over P2O5. Yield: 1.525 g, 

88.0%. Found C 20.14, H 2.29%. Calcd. for 

C8H12ClO8Ru2: C 20.28, H 2.55%. 

The precursor complexes, [Ru2Cl(n-

C3H7COO)4] and [Ru2(n-C3H7COO)4(H2O)2]BF4 

were synthesized in an inert atmosphere, using 

standard Schlenk techniques according to the 

literature procedures [39].  

Synthesis of [Ru2Cl(n-C3H7COO)4] 

To [Ru2Cl(CH3COO)4] (0.303 g,  

0.639 mmol) was added an excess amount of 

butanoic acid (2.79 mL, 30.4 mmol). The reaction 

mixture was heated under reflux for 4.5 h under 

argon, to give a brown precipitate. The precipitate 

was collected by filtration, washed with small 

amounts of water and diethyl ether, and dried in 

vacuo over P2O5. Yield: 240 mg, 64.1%. Found  

C 32.53, H 5.08%. Calcd. for C20H36ClO8Ru2:  

C 32.80, H 4.82%. 
Synthesis of [Ru2(n-C3H7COO)4(H2O)2]BF4 

A suspension of [Ru2Cl(n-C3H7COO)4] 

(107 mg, 0.18 mmol) in tetrahydrofuran (15 mL) 

was treated with AgBF4 (34 mg, 0.17 mmol) in 

tetrahydrofuran (15 mL). The mixture was stirred 

for 24 h, and then the precipitate of AgCl was 

removed by filtration over celite. The filtrate was 

concentrated by a rotary evaporator to ca. 5 mL, 

and n-hexane was added to give a brown 

precipitate. The precipitate was collected by 

filtration and washed with diethyl ether. Yield: 

101 mg, 88.3%. Found C 28.21, H 4.46%. Calcd. 

for C16H32BF4O10Ru2: C 28.54, H 4.79%. 

Synthesis of [Ru2(n-C3H7COO)4Au(CN)4]n 

To an aqueous solution (5 cm3) of  

[Ru2(n-C3H7COO)4(H2O)2]BF4 (50.5 mg, 0.075 

mmol), an aqueous solution (5 cm3) of 

K[Au(CN)4] (24.3 mg, 0.071 mmol) was added. 

The solution was stirred for a while. The resulting 

yellow–brown precipitate was filtered off, washed 

with water, and desiccated in vacuo over P2O5. 

Yield: 40.6 mg, 63.6%. Found C 27.86, H 3.24,  

N 6.05%. Calcd. for C20H28AuN4O8Ru2: C 28.21, 

H 3.31, N 6.58%. IR (KBr, cm–1): (CN) 2211, 

as(COO) 1451, s(COO) 1427.  

Physical measurements 

Elemental analyses for carbon, hydrogen, 

and nitrogen were performed using a  

Thermo-Finnigan FLASH EA1112 series  

CHNO-S analyzer.  

Infrared spectra were recorded on a 

JASCO MFT-2000 FT-IR Spectrometer in the 

4000—600 cm–1 region using a KBr disc.  

The variable-temperature magnetic 

susceptibility data were measured on a Quantum 

Design MPMS-XL7 SQUID susceptometer 

operating at a magnetic field of 0.5 T over a range 

of 4.5—300 K. The susceptibility data were 

corrected for the diamagnetism of the constituent  

atoms using Pascal’s constants [40]. The effective 

magnetic moments were calculated from the 

equation eff= 2.828MT, where M is the molar 

magnetic susceptibility per mole of  
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[Ru2(n-C3H7COO)4Au(CN)4] unit. The magnetic 

data were analyzed by the use of Eq.(1-4) 

described below for the S= 3/2 system with the 

zero-field splitting parameter D and the magnetic 

interaction between the Ru2(n-C3H7COO)4
+ units 

being taken into account by the mean-field 

approximation [7,22,41-43]: 
 

’= /{1 – (2zJ/Ng2B
2)}                  (1) 

 

where,  zJ is the exchange energy multiplied by 

the number (z) of interacting neighbors;  

  is the magnetic susceptibility. 
 

= (// + 2⊥)/3,                                          (2) 

 

where, // and ⊥ are magnetic susceptibility 

terms defined as follows: 
 

//= (Ng2B
2/kT){1 + 9exp(-2D/kT)}/4{1 +  

 exp(-2D/kT)},                         (3) 
 

⊥= (Ng2B
2/kT)[4 + (3kT/D){1 – exp(-2D/kT)}]/4{1 + 

exp(-2D/kT)}.                        (4) 

 

Single-crystal X-ray diffraction 

Crystals suitable for X-ray diffraction work 

were grown by reaction with a slow diffusion 

technique using an H-shaped tube at room 

temperature. Single-crystal diffraction data were 

measured on a Bruker Smart APEX CCD 

diffractometer equipped with a graphite crystal 

and incident beam monochromator using Mo Kα 

radiation (= 0.71073 Å). The structure was 

solved by intrinsic phasing methods, and refined 

by full-matrix least-squares methods. The carbon 

atoms C15 and C16 were found to be disordered 

and divided into two positions (A and B). The 

hydrogen atoms were inserted at their calculated 

positions and fixed there. All of the calculations 

were carried out utilizing the SHELXTL software 

package [44]. Crystallographic data have been 

deposited with Cambridge Crystallographic Data 

Centre: Deposit numbers CCDC-1846173. Copies 

of the data can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html  

(or from the Cambridge Crystallographic  

 

Data Centre, 12, Union Road, Cambridge,  

CB2 1EZ, UK; Fax: +44 1223 336033;  

e-mail: deposit@ccdc.cam.ac.uk). 

  

Results and discussion 

Synthesis and characterization of  

[RuIIRuIII(n-C3H7COO)4AuIII(CN)4]n 

The chemical structure of the present 

complex, catena-(bis(µ-cyanido)-tetrakis 

(µ-butanoato)-dicyanido-gold-diruthenium), is 

depicted in Scheme 1.  

 

 

Scheme 1. Chemical structure of  

catena-(bis(µ-cyanido)-tetrakis(µ-butanoato)-

dicyanido-gold-diruthenium). 

 

The present complex was synthesized as 

described in Scheme 2.  

The starting material, [Ru2Cl(CH3COO)4],  

was synthesized by the reaction of RuCl3·6H2O 

and (CH3CO)2O/CH3COOH under aerobic 

conditions. The corresponding butanoate, 

[Ru2Cl(n-C3H7COO)4], was obtained by the 

substitution reaction of the acetato-ligands  

by butanoato-ligands under anaerobic  

conditions. Then, the chlorido-ligand was 

eliminated by reaction with AgBF4 to give  

[Ru2(n-C3H7COO)4(H2O)2]BF4. The present 

complex was synthesized as a result of the 

interaction of [Ru2(n-C3H7COO)4(H2O)2]BF4 and 

K[Au(CN)4] in a 1:1 molar ratio in aqueous 

solution as a yellow–brown precipitate. 

 

 

 
 

Scheme 2. Synthetic route for the synthesis of the present complex. 
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Elemental analysis of the complex showed 

the formation of [Ru2(n-C3H7COO)4Au(CN)4]n. 

The infrared spectra of the complex showed 

antisymmetric and symmetric stretching bands for 

the COO– group at 1451 and 1427 cm–1 with an 

energy difference of as(COO) and s(COO)  

of 24 cm–1, which are similar to those observed 

for the related Ru2Au complexes 

[Ru2(RCOO)4Au(CN)4]n (R= CH3, C2H5, i-C3H7, 

and t-C4H9) (as(COO) 1437–1487 cm–1 and 

s(COO) 1400–1435 cm–1) with the syn-syn mode 

of µ-carboxylato bridges [22,45] and consistent 

with the crystal structure. It is known that the 

frequency shift of (CN) bands of metal cyanides 

to the higher energy side is indicative of the 

bridging state of the CN groups [45]. The CN 

stretching-vibration band of the present complex 

appeared at 2211 cm–1, which is at the higher-

energy side compared with the (CN) band  

(2190 cm–1) of K[Au(CN)4] [22], suggesting the 

bridging (CN) band of the Au(CN)4
– ligand to 

the diruthenium cluster. The lower-energy band 

ascribed to the uncoordinated CN groups is 

obscure in the present complex.  
 

Crystal structure of  

[RuIIRuIII(n-C3H7COO)4AuIII(CN)4]n 

Crystal data and details concerning data 

collection are given in Table 1. Selected bond 

lengths and angles are listed in Table 2. The 

butanoato complex [Ru2(n-C3H7COO)4Au(CN)4]n 

crystallized in the monoclinic lattice. 
A perspective view of the molecular 

structure is shown in Figure 1. The structure 

consists of a 1-D chain molecule with alternating 

arrangement of Ru2(n-C3H7COO)4
+ and  

Au(CN)4
– units, where two cyanido groups of 

each Au(CN)4
– linker are coordinated to the axial 

sites of two Ru2(n-C3H7COO)4
+ units in a  

cis-bridging mode. The Au1 atom is coordinated 

by C1, C2, C3, and C4 atoms, forming a square 

planar Au(CN)4
– unit. The Au-C distances are 

1.992(11)—2.020(14) Å. 
 

 

Table 1 

Crystallographic data of [Ru2(n-C3H7COO)4Au(CN)4]n.a) 

Parameter Value 

Empirical formula C20H28AuN4O8Ru2 

Formula mass 851.57 

Temperature 273 K 

Crystal system Monoclinic 

Space group P21/n 

a 10.390(5) Å 

b 20.297(10) Å 

c 13.695(7) Å 

 109.394(9)° 

Unit-cell volume, V 2724(2) Å3 

Formula per unit cell, Z 4 

Density, Dcalcd 2.076 g cm-3 

Crystal size 0.04×0.02×0.02 mm3 

Absorption coefficient,  6.515 mm-1 

 range for data collection 2.308–27.497° 

Reflections collected/unique 17130/6247 

R indices [I> 2(I)]b R1= 0.0606, wR2= 0.1399 

Goodness-of-fit on F2 0.875 
aStandard deviations in parentheses; bR1= ||Fo|-|Fc||/|Fo|; wR2= [w(Fo

2 – Fc
2)2/(Fo

2)2]1/2. 

 

Table 2 

Selected structural parameters of [Ru2(n-C3H7COO)4Au(CN)4]n. 

Bond length d, Å Bond length d, Å 

Ru1-Ru2 2.2671(15) Ru2-O6 2.018(8) 

Ru1-O1 2.007(8) Ru2-O8 2.017(7) 

Ru1-O3 2.041(8) Ru2-N2b 2.273(9) 

Ru1-O5 1.999(8) Ru2a-N2 2.273(9) 

Ru1-O7 2.021(8) Au1-C1 1.997(12) 

Ru1-N1 2.284(9) Au1-C2 1.992(11) 

Ru2-O2 2.023(7) Au1-C3 1.984(13) 

Ru2-O4 2.025(8) Au1-C4 2.020(14) 

Bond Angle , ° Bond Angle , ° 

Ru2-Ru1-N1 173.6(3) Ru1-Ru2-N2b 177.1(2) 

Symmetry codes: (a) (–x+3/2, y–1/2, –z+3/2), (b) (–x+3/2, y+1/2, –z+3/2). 
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The diruthenium cluster takes a 

paddlewheel-type Ru2 core with four  

syn-syn butanoato-bridges with a Ru1-Ru2 

distance of 2.2671(15) Å, Ru1-O and Ru2-O 

distances of 1.999(8)—2.041(8) Å,  

Ru1-N1 distance of 2.284(9) Å, and Ru2-N2b 

distance of 2.273(9) Å, which are in the  

normal ranges observed in tetrakis 

(µ-carboxylato)diruthenium(II,III) clusters  

[5-7,22]. The Ru1-Ru2-N2b and Ru2-Ru1-N1 

angles are 177.1(2) and 173.6(3)°, deviating from 

the linear arrangement slightly. The cis-bridging 

of the Au(CN)4
– linker results in the formation of 

zigzag chain molecules in the crystal, similar to 

the Ru2Au complexes of the propanoate  

(R= C2H5) and 2-methylpropanoate (i-C3H7) [22]. 

In the crystal, the zigzag chain molecules  

are extended along the b-axis, as shown in  

Figure 2. There are no aurophilic interactions 

between the chain molecules, as found in the 

related Ru2Au complexes, diruthenium(II,III) 

carboxylates Ru2(RCOO)4
+ (R= CH3, C2H5,  

i-C3H7, and t-C4H9) with tetracyanidoaurate(III) 

[22]. This is in contrast with the case  

for the heterometallic complex of  

dirhodium carboxylate and dicyanidoaurate, 

Kn[Rh2(C2H5COO)4Au(CN)2]n [14]. There are no 

voids in the crystal structure. 

 

 

 
Figure 1. The ORTEP view of molecular structure of [Ru2(n-C3H7COO)4Au(CN)4]n, showing thermal 

ellipsoids at the 50% probability level. The disordered carbon atoms (C15B and C16B) and  

hydrogen atoms are omitted for clarity. 

 

 
Figure 2. Packing diagram of [Ru2(n-C3H7COO)4Au(CN)4]n. The disordered carbon atoms  

(C15B and C16B) and hydrogen atoms are omitted for clarity. 

81 



M. Mikuriya et al. / Chem. J. Mold., 2023, 18(1), 77-85 
 

 

Magnetic property of  

[RuIIRuIII(n-C3H7COO)4AuIII(CN)4]n 

The magnetic property of the present 

complex was studied by measuring the 

temperature dependence of magnetic 

susceptibility and the result is illustrated in  

Figure 3. The magnetic moment per RuII-RuIII 

unit is 4.05 B at 300 K, which is in accordance 

with the existence of three unpaired electrons per  

RuII-RuIII unit with an S= 3/2 state. The magnetic 

moment decreases gradually with decreasing 

temperature until 80 K and then decreases 

steeply close to 4.5 K, which may be due  

to the zero-field splitting (D) within  

the Ru2(n-C3H7COO)4
+ unit and the 

antiferromagnetic interaction between the  

Ru2(n-C3H7COO)4
+ units through the axial 

Au(CN)4
– linker.  

 

 
Figure 3. Temperature dependence of magnetic 

moment eff and magnetic susceptibility M for  

[Ru2(n-C3H7COO)4Au(CN)4]n. The solid black lines 

were calculated and drawn with the parameter 

values described in the text.  
 

The magnetic analysis gave the following 

parameter values for the present complex:  

g= 2.12, D= 60 cm-1, and zJ= 0 cm-1.  

The obtained D value is normal for  

tetrakis(µ-carboxylato)diruthenium(II,III) cores 

[7,22]. The zJ value of 0 cm–1 means that the 

magnetic interaction is negligibly small in the 

present complex, being slightly different from 

those of mixed-metal complexes of diruthenium 

carboxylates Ru2(RCOO)4
+ (R= CH3, C2H5,  

i-C3H7, and t-C4H9) with tetracyanidoaurate(III) 

(zJ= –0.10 — –0.15 cm–1) [22]. In these Ru2Au 

complexes, dinuclear ruthenium units are  

well separated, the closest intermolecular  

Ru···Ru distances being 6.442 Å (R= CH3),  

7.319 Å (R= C2H5), 7.470 Å (R= n-C3H7),  

7.458 Å (i-C3H7), and 8.183 Å (t-C4H9). 

Therefore, it is difficult to evaluate the zJ values 

in relation to the crystal structures.  

Similar weak interactions were observed  

in the related heterometallic complexes  

of ruthenium(II,III) carboxylate with 

dicyanidoargentate(I) (zJ= ‒0.10, ‒0.50 cm-1) 

[10], tetracyanidonickelate(II) (zJ= –0.20 cm-1) 

[16], tetracynidopalladate(II) (zJ= –0.10 cm-1) 

[19], tetracyanidoplatinate(II) (zJ= –0.10 cm-1) 

[20,21]. 
 

Conclusions  

In this study, a new heterometallic Ru2Au 

complex was synthesized by the reaction of 

tetrakis(µ-butanoato)diruthenium(II,III) with 

tetracyanidoaurate(III). The X-ray crystal 

structure analysis revealed that the present 

complex consists of zigzag chain molecules with 

the cis-bridging mode of the Au(CN)4
– linkers. 

Compared with the previous study, it can be 

concluded that the different bridging modes of 

the Au(CN)4
– linkers may come from the 

different steric hindrance of the substituent R 

groups of the carboxylato-bridges of the 

Ru2(RCOO)4
+ core.  

It may be considered that spherical  

CH3- and t-C4H9- groups cannot allow steric 

hindrance between the alkyl groups for the  

cis-bridging mode, while the C2H5-, n-C3H7-, and 

i-C3H7- groups can accommodate the  

cis-bridging mode because of the nonspherical 

alkyl groups.  

The cis-type of bridging mode seems to be 

ubiquitous for heterometal complexes of dimetal 

carboxylates with n-alkyl groups and 

tetracyanidometalates.  
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